POLI210: Political Science Research Methods

Lecture 9.2: Means and distributions
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- First quiz: how did it go? (POLLING)
- | will release the grades shortly
- Grading in psetl: some accommodations
- | will attend labs tomorrow and announce in-person OHs



Plan for this lecture

1. Descriptive statistics

- Measures of central tendency: mean, median, mode
- Measures of dispersion: standard deviation, variance

2. Confidence intervals
3. How should | describe distributions?
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Measures of central tendency: the mean

Why do we like the mean? It's often a good one-number summary of the
data

- But not always: the mean is sensitive to outliers

- What's the mean here? (23, 28,97)

23 + 28 + 96
.M:%:@

But there’s no one even close to 49!

- That's because of the “outlying” value of 97
- Qutlier: a value that is far from rest of distribution

- Example:
- The mean income is in this zoom meeting? Probably around 5,0005

- What if Elon Musk walks in? (net worth: 255 billion)
255 billion+ whatever we make 2 il
5 [ = = 2.5 billion
a 100 + 1




Measures of central tendency: the median

Observation

(once ordered)

Consider this vector of values:
set.seed(123)

incomes_5 <- sample(1:100, size = 5, replace = TRUE)

incomes_5

## [1] 31 79 51 14 67

incomes_5[order(incomes_5)]
## [1] 14 31 51 67 79

1
The median is the: = 3 value = 42




Measures of central tendency: the median

incomes <- sample(1000:15000, size = 10, replace = TRUE)

incomes[order(incomes)]

## [1] 2841 3985 4370 5760 7745 10333 12637 14325 14540 14555

median(incomes)

## [1] 9039

incomes <- c(incomes, 255000000000)

incomes[order(incomes)]

## [1] 2841 3985 4370 5760 7745
##t [6] 10333 12637 14325 14540 14555
## [11] 255000000000

median(incomes)

1
## [1] 10333



Measures of central tendency: the mode

The mode is pretty simple: the value that appears most often

- Not so useful for continuous variables, e.g. income

- Pretty useful for nominal variables
- Nominal variables: values cannot be ordered



Measures of dispersion: the standard deviation

If you picked a random value from a distribution, how far away from the
mean would you expect it to be?

Procedure:

- For each value, you compute its distance from the mean
- You square that distance (e.g. 42 = 16)

- You sum up all of those squared distances

- You divide by n — 1

- You take the square root



Measures of dispersion: the standard deviation

incomes_5

## [1] 31 79 51 14 67

mean(incomes_5)

## [1] 48.4

incomes_5 - mean(incomes_5)

## [1] -17.4 30.6 2.6 -34.4 18.6

distance_from_mean_sq <- (incomes_5 - mean(incomes_5))"2

distance_from_mean_sq

## [1] 302.76 936.36 6.76 1183.36 345.96

sum_distance <- sum(distance_from_mean_sq)

sum_distance

## [1] 2775.2
sqrt(sum_distance/(5-1))

14
## [1] 26.34008



Confidence intervals



Uncertainty due to sampling

We draw a sample

- Ideally by randomly drawing from the population
- We compute some sample statistic of interest, e.g. the mean height
- We want to infer the population parameter

- But we know that there is sampling variation
- Even if we draw a random sample, we may be more or less far from

the true population parameter
Remember the central limit theorem

- Under repeated (random) sampling, the distribution of sample
means (the sampling distribution) will approximate a normal
distribution

- No matter the underlying shape of the population distribution!



CLT, again

Distribution of the mean of ideology from 1,000 samples of size 20
100

Number of samples
n
o

3
Sample mean of ideology



Confidence intervals

We don’t know if we drew a “good sample”

- A good sample: sample mean is close to true population parameter
- Given CLT, we are more likely to be close than to be far
- But there is a possibility that we're way off!

This is where confidence intervals come in

mean(survey$ideology, na.rm = T)

## [1] 2.952555

survey_30 <- survey[sample(1l:nrow(survey), 30),]

mean(survey_30%$ideology, na.rm = T)

## [1] 2.9

t.test(survey_30%$ideology)$"conf.int"

## 1] 2.177068 3.622932



What your confidence interval says and does not say

Confidence intervals have a confidence “level”

- Generally 95%, but sometimes 90% or 99%

- If we were to repeatedly sample random units and computed the
mean and associated confidence interval for each sample, | would
expect 95% of confidence intervals to include the true population
parameter

- Does this specific Cl in this specific sample contain the true
population parameter?

- We don’t know! It's more likely that it does than it doesnt! But it
might not!

- Do confidence intervals replace the need for appropriate sampling
strategies?

- NO!M Confidence intervals are only valid under random sampling
from the population
- If there is sampling bias, the confidence interval is NOT VALID
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- Note the quite large Cls! (but coverage looks fine!)

Confidence intervals from the class survey
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Confidence intervals with sampling bias
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How is the confidence interval computed?

For the 95% confidence interval, a helpful rule of thumb is:
CIlower = /2 —2*xSE

- What's the hat on top of mu? Simply means it's an estimate from
our sample
- What's SE?
- The standard error of the mean
- It's our estimate of the standard deviation of the sampling
distribution
- If | could draw many samples, compute the mean each time, and plot
the distribution of sample means..what would be its standard
deviation?
- The idea: the larger the SE, the more dispersed the sampling
distribution
- The more likely I draw a sample that is far from true parameter

2
- And thus the less confidence we have in our sample estimate



How is the confidence interval computed?

5
NG

0 our estimate of the population standard deviation

SE =

sample <- survey[sample(l:nrow(survey), 30),]

mean(sample$ideology, na.rm = T)

## [1] 2.689655
sd(sample$ideology, na.rm = T)

## [1] 1.64975

se <- sd(sample$ideology, na.rm = T) / sqrt(30)
se

## [1] 0.3012018

mean(sample$ideology,na.rm = T) + 2xse

## [1] 3.292059
23



What affects the confidence intervals?

Two parameters influence the width of the confidence interval:

- The standard deviation of the data in the sample

- More spread out means less certainty

- Think of opposite situation: | draw values of 2,3,2,3,3,3...

- My mean is still pretty close to 2.95

- But the sample’s SD is very small; the CI will be narrower
- The sample size

- More people in the sample ~» more precise estimates

- BUT: notice the square root?

- There are diminishing returns to sample size

- Going from 100 to 1,000: great!

- Going from 1,000 to 10,000: not a great resource expenditure!

2%



SD of the data and Cls
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NBA scoring

zion_harden <- read.csv("lectures/lecture_9.2/nba_data.csv")

sample_n(zion_harden, 6)

#it X yearSeason dateGame namePlayer pts
## 1 159 2021 2021-04-14 Zion Williamson 25
## 2 48 2020 2020-08-06 James Harden 39
#it 3 4 2021 2021-03-31 James Harden 17
## 4 102 2020 2020-03-04 Zion Williamson 21
## 5 76 2020 2020-01-11 James Harden 32
## 6 46 2020 2020-08-12 James Harden 45

Figure 1: Zion Williamson Figure 2: James Harden 26



Zion vs Harden

ggplot(zion_harden, aes(x = namePlayer, y = pts)) +
geom_jitter(width = 0.2) +
labs(x = "Player", y = "Points in a game") +
theme_bw(base_size = 19, base_family = "Fira Sans")
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Visualizing with a boxplot

ggplot(zion_harden, aes(x = namePlayer, y = pts)) +
geom_boxplot() +
geom_jitter(width = 0.1, aes(col = namePlayer, fill = namePlayer), shape = 21,
labs(x = "P Y "Points in
theme_bw(base_size = 19, base_family Fira Sans") +
scale_fill_manual(values = c("#CE1141", "#
scale_color_manual(values = c("#00 :
guides(fill = FALSE, col = FALSE)
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Visualizing with a density plot

ggplot(zion_harden, aes(x = pts, col = namePlayer)) +
geom_density(size = 1.25) +
labs(x = "Points in a game", y = "Density") +
theme_bw(base_size = 19, base_family = "Fira Sans") +
scale_color_manual(values = c("#CE1141", "#0C2340"), name = "Player")
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Confirming our intuition

zion_harden %>%
group_by(namePlayer) %>%
summarise(mean_pts = mean(pts),
sd_pts = sd(pts))

## # A tibble: 2 x 3

#i namePlayer mean_pts sd_pts
##t <chr> <dbl> <dbl>
## 1 James Harden 27.9 10.1
## 2 Zion Williamson 25.7 6.59

Zion scores 25.7 points per game, on average
On any given night, he's likely to be pretty close to that
Harden scores 27.9 points per game, on average

- On any given night, he may disappear or blow up and score 50

30
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Harden vs Williamson

Harden samples have wider Cls; why?

- The standard deviation is higher for Harden

- Thus, the standard error of the mean is higher
g

- If I draw many samples...

- The sampling distribution has a larger standard deviation
- i.e. 1 standard error of the mean

35



Sampling distribution for Harden

Distribution of the mean of points from 1,000 samples of size 20 each

Number of samples
8

30
Sample mean of points (Harden)

sd(harden_mean_20$sample

## [1] 2.013424

harden_sample sample_n(harden_last85, size =

harden_sample

## [1] 19 34 40 29 33 25 13 44 27 26 41 32 17 31 16 47 17 32 35 39
sd(harden_sample)/sqrt(20)

## [1] 2.200807

36



Sampling distribution for Zion

Distribution of the mean of points from 1,000 samples of size 20 each

Number of samples
8 El

250
Sample mean of points (Harden)

sd(zion_mean_20$sample2

## [1] 1.308247

zion_sample <- sample_n(zi

zion_sample

## [1] 31 37 38 24 17 20 25 33 29 32 23 30 14 21 27 32 33 29 28 36

sd(zion_sample)/sqrt(20)

## [1] 1.471617

37



Two sampling distributions together

rbind(zion_mean_20, harden_mean_20) %>%
ggplot(aes(x = sample20, col = player)) +
geom_density(size = 1.25) +
theme_bw(base_size = 19, base_family = "Fira Sans")
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Describing distributions




The normal distribution

We'll start with something we've seen before: the normal distribution

- The shape is commonly known: the “bell curve”
- Itis perfectly symmetrical: mean = mode = median

- Turns out, a lot of things naturally follow the normal curve!

Normal Distribution

0.051 0.13% 2.14% 34.13%  34.13% 2.14% 0.13%

uU—40 p—30 u—-20 u;a I ,LH‘-cr U+20 p+30 pu+4o 39



Normality in my listening habits

ggplot(music, aes(x = time)) +
geom_histogram(fill = "steel blue", col = "black") +
scale_x_datetime(breaks = scales::breaks_width("60 min"),
date_labels = ' ") o+
theme_bw(base_size = 19)
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time
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Skewed distributions: right-skew

load("lectures/lecture_9.1/survey.RData")

survey_500s <- subset(survey_full, time_conjointl < 500)

ggplot(data = survey_500s, aes(x = time_conjointl)) +
geom_histogram(fill = "steel blue", col = "black") +
theme_bw(base_size = 19)
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4001

count

2004

0 100 200 300 400
time_conjointl
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Skewed distributions: right-skew

Skewed distributions are asymmetric

- In the example above, the right-tail is much longer
- It's a right-skewed distribution
- Also called a positively-skewed distribution

- Mean # Median

42



Skewed distributions: right-skew

Skewed distributions are asymmetric

- In the example above, the right-tail is much longer
- It's a right-skewed distribution
- Also called a positively-skewed distribution

- Mean # Median

mean(survey_5600s$time_conjointl)

## [1] 37.72603

median(survey_500s$time_conjoint1)

## [1] 30.319

42



Skewed distributions: left-skew

grades <- read.csv("lectures/lecture_9.2/psetl_grades.csv")
ggplot(grades, aes(x = grade)) +
geom_histogram(fill = "steel blue", col = "black") +
theme_bw(base_size = 19) +
geom_vline(xintercept = mean(grades$grade,na.rm = T),
col = "red", size = 1) +
geom_vline(xintercept = median(grades$grade,na.rm = T),
col = "green", size = 1)
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Multimodal distributions: NFL players

nfl <- read.csv("lectures/lecture_9.2/nfl_height_weight.csv")
ggplot(data = nfl, aes(x = weight_in_1bs)) +
geom_histogram(breaks = seq(150, 350, 5),
fill = "steel blue", col = "black") +
theme_bw(base_size = 19)

904

€ 60+
3
Q
o

304

04

T T T T T
150 200 250 300 350
weight_in_lbs

4t



Multimodal distributions

D-line Linebackers O-line
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Skewed distribution: what kind of skewness?

BAC histegram

2,000 4

1,500

1,000

Frequency
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04
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Figure 1. BAC DisTrIBUTION

Notes: Based on administrative records from the Washington State Impaired Driver Testing
Program, 1999-2007. The histogram height cn the vertical axis is based on frequency of abser-
vatiors, with BAC on the horizontal axis. The vertical black lines represent the two legal thresh-
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