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Boring admin stuff

• First quiz: how did it go? (POLLING)
• I will release the grades shortly

• Grading in pset1: some accommodations
• I will attend labs tomorrow and announce in-person OHs
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Plan for this lecture

1. Descriptive statistics

• Measures of central tendency: mean, median, mode
• Measures of dispersion: standard deviation, variance

2. Confidence intervals
3. How should I describe distributions?
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Measures of central tendency: the mean

𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑎𝑖 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛
𝑛

Wait, what?
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Measures of central tendency: the mean

Take the following vector: (7, 1, 10) = (𝑎1, 𝑎2, 𝑎3)

• The mean is:

𝜇 = 1
5

3
∑
𝑖=1

𝑎𝑖

= 7 + 1 + 10
3 = 6
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Measures of central tendency: the mean

Why do we like the mean? It’s often a good one-number summary of the
data

• But not always: the mean is sensitive to outliers
• What’s the mean here? (23, 28, 97)
• 𝜇 = 23 + 28 + 96

3 = 49

But there’s no one even close to 49!

• That’s because of the “outlying” value of 97
• Outlier: a value that is far from rest of distribution
• Example:

• The mean income is in this zoom meeting? Probably around 5,000$
• What if Elon Musk walks in? (net worth: 255 billion)

• 𝜇 = 255 billion+ whatever we make
100 + 1 = 2.5 billion
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Measures of central tendency: the median

Observation
𝑛 + 1

2 (once ordered)

Consider this vector of values:
set.seed(123)
incomes_5 <- sample(1:100, size = 5, replace = TRUE)
incomes_5

## [1] 31 79 51 14 67
# Let's order them:
incomes_5[order(incomes_5)]

## [1] 14 31 51 67 79

The median is the:
5 + 1

2 = 3rd value = 42
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Measures of central tendency: the median

# Imagine that there are 9 students and me; our incomes:
incomes <- sample(1000:15000, size = 10, replace = TRUE)

# Let's order them:
incomes[order(incomes)]

## [1] 2841 3985 4370 5760 7745 10333 12637 14325 14540 14555

median(incomes)

## [1] 9039

# Elon Musk walks in...
incomes <- c(incomes, 255000000000)
# Let's order them:
incomes[order(incomes)]

## [1] 2841 3985 4370 5760 7745
## [6] 10333 12637 14325 14540 14555
## [11] 255000000000

median(incomes)

## [1] 10333
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Measures of central tendency: the mode

The mode is pretty simple: the value that appears most often

• Not so useful for continuous variables, e.g. income
• Pretty useful for nominal variables

• Nominal variables: values cannot be ordered
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Measures of dispersion: the standard deviation

If you picked a random value from a distribution, how far away from the
mean would you expect it to be?

𝜎 =
√√√
⎷

1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝑥)2

Procedure:

• For each value, you compute its distance from the mean
• You square that distance (e.g. 42 = 16)
• You sum up all of those squared distances
• You divide by 𝑛 − 1
• You take the square root

13



Measures of dispersion: the standard deviation

incomes_5

## [1] 31 79 51 14 67

mean(incomes_5)

## [1] 48.4

incomes_5 - mean(incomes_5)

## [1] -17.4 30.6 2.6 -34.4 18.6

distance_from_mean_sq <- (incomes_5 - mean(incomes_5))^2
distance_from_mean_sq

## [1] 302.76 936.36 6.76 1183.36 345.96

sum_distance <- sum(distance_from_mean_sq)
sum_distance

## [1] 2775.2

sqrt(sum_distance/(5-1))

## [1] 26.34008
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Confidence intervals



Uncertainty due to sampling

We draw a sample

• Ideally by randomly drawing from the population
• We compute some sample statistic of interest, e.g. the mean height
• We want to infer the population parameter
• But we know that there is sampling variation

• Even if we draw a random sample, we may be more or less far from
the true population parameter

Remember the central limit theorem

• Under repeated (random) sampling, the distribution of sample
means (the sampling distribution) will approximate a normal
distribution

• No matter the underlying shape of the population distribution!
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CLT, again
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Confidence intervals

We don’t know if we drew a “good sample”

• A good sample: sample mean is close to true population parameter
• Given CLT, we are more likely to be close than to be far
• But there is a possibility that we’re way off!

This is where confidence intervals come in
# true parameter that sampling is trying to infer
mean(survey$ideology, na.rm = T)

## [1] 2.952555

# Making one sample of 30 students
survey_30 <- survey[sample(1:nrow(survey), 30),]
mean(survey_30$ideology, na.rm = T)

## [1] 2.9

t.test(survey_30$ideology)$"conf.int"

## [1] 2.177068 3.622932
## attr(,"conf.level")
## [1] 0.95
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What your confidence interval says and does not say

Confidence intervals have a confidence “level”

• Generally 95%, but sometimes 90% or 99%
• If we were to repeatedly sample random units and computed the
mean and associated confidence interval for each sample, I would
expect 95% of confidence intervals to include the true population
parameter

• Does this specific CI in this specific sample contain the true
population parameter?

• We don’t know! It’s more likely that it does than it doesn’t! But it
might not!

• Do confidence intervals replace the need for appropriate sampling
strategies?

• NO!!! Confidence intervals are only valid under random sampling
from the population

• If there is sampling bias, the confidence interval is NOT VALID
• i.e. it will NOT be true that in 95% of repeated samples, 95% of the
confidence intervals will contain the true population parameter
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Confidence intervals from the class survey
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Confidence intervals with larger samples
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Confidence intervals with sampling bias
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• 3 of my confidence intervals (15%) do not include the true parameter 21



How is the confidence interval computed?

For the 95% confidence interval, a helpful rule of thumb is:

CIlower = ̂𝜇 − 2 ∗ 𝑆𝐸

• What’s the hat on top of mu? Simply means it’s an estimate from
our sample

• What’s SE?
• The standard error of the mean
• It’s our estimate of the standard deviation of the sampling
distribution

• If I could draw many samples, compute the mean each time, and plot
the distribution of sample means…what would be its standard
deviation?

• The idea: the larger the SE, the more dispersed the sampling
distribution

• The more likely I draw a sample that is far from true parameter
• And thus the less confidence we have in our sample estimate
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How is the confidence interval computed?

𝑆𝐸 = �̂�√𝑛
�̂�: our estimate of the population standard deviation
sample <- survey[sample(1:nrow(survey), 30),]
mean(sample$ideology, na.rm = T)

## [1] 2.689655

sd(sample$ideology, na.rm = T)

## [1] 1.64975

se <- sd(sample$ideology, na.rm = T) / sqrt(30)
se

## [1] 0.3012018

mean(sample$ideology,na.rm = T) + 2*se

## [1] 3.292059
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What affects the confidence intervals?

Two parameters influence the width of the confidence interval:

• The standard deviation of the data in the sample
• More spread out means less certainty
• Think of opposite situation: I draw values of 2,3,2,3,3,3…
• My mean is still pretty close to 2.95
• But the sample’s SD is very small; the CI will be narrower

• The sample size
• More people in the sample⇝ more precise estimates
• BUT: notice the square root?
• There are diminishing returns to sample size
• Going from 100 to 1,000: great!
• Going from 1,000 to 10,000: not a great resource expenditure!
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SD of the data and CIs
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NBA scoring

zion_harden <- read.csv("lectures/lecture_9.2/nba_data.csv")

# A tidyverse function to sample from dataframe
sample_n(zion_harden, 6)

## X yearSeason dateGame namePlayer pts
## 1 159 2021 2021-04-14 Zion Williamson 25
## 2 48 2020 2020-08-06 James Harden 39
## 3 4 2021 2021-03-31 James Harden 17
## 4 102 2020 2020-03-04 Zion Williamson 21
## 5 76 2020 2020-01-11 James Harden 32
## 6 46 2020 2020-08-12 James Harden 45

Figure 1: Zion Williamson Figure 2: James Harden 26



Zion vs Harden

ggplot(zion_harden, aes(x = namePlayer, y = pts)) +
geom_jitter(width = 0.2) +
labs(x = "Player", y = "Points in a game") +
theme_bw(base_size = 19, base_family = "Fira Sans")
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Visualizing with a boxplot

ggplot(zion_harden, aes(x = namePlayer, y = pts)) +
geom_boxplot() +
geom_jitter(width = 0.1, aes(col = namePlayer, fill = namePlayer), shape = 21, size = 2) +
labs(x = "Player", y = "Points in a game") +
theme_bw(base_size = 19, base_family = "Fira Sans") +
scale_fill_manual(values = c("#CE1141", "#0C2340")) +
scale_color_manual(values = c("#000000", "#C8102E")) +
guides(fill = FALSE, col = FALSE)
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Visualizing with a density plot

ggplot(zion_harden, aes(x = pts, col = namePlayer)) +
geom_density(size = 1.25) +
labs(x = "Points in a game", y = "Density") +
theme_bw(base_size = 19, base_family = "Fira Sans") +
scale_color_manual(values = c("#CE1141", "#0C2340"), name = "Player")
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Confirming our intuition

zion_harden %>%
group_by(namePlayer) %>%
summarise(mean_pts = mean(pts),

sd_pts = sd(pts))

## # A tibble: 2 x 3
## namePlayer mean_pts sd_pts
## <chr> <dbl> <dbl>
## 1 James Harden 27.9 10.1
## 2 Zion Williamson 25.7 6.59

Zion scores 25.7 points per game, on average

• On any given night, he’s likely to be pretty close to that

Harden scores 27.9 points per game, on average

• On any given night, he may disappear or blow up and score 50
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Drawing a first sample of 20 games
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Adding a second sample of 20 games
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And a third…
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All 20 samples
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Harden vs Williamson

Harden samples have wider CIs; why?

• The standard deviation is higher for Harden
• Thus, the standard error of the mean is higher

• 𝑆𝐸 = �̂�√𝑛
• If I draw many samples…

• The sampling distribution has a larger standard deviation
• i.e. ↑ standard error of the mean
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Sampling distribution for Harden
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sd(harden_mean_20$sample20)

## [1] 2.013424

harden_sample <- sample_n(harden_last85, size = 20)$pts
harden_sample

## [1] 19 34 40 29 33 25 13 44 27 26 41 32 17 31 16 47 17 32 35 39

sd(harden_sample)/sqrt(20)

## [1] 2.200807 36



Sampling distribution for Zion
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sd(zion_mean_20$sample20)

## [1] 1.308247

zion_sample <- sample_n(zion_first85, size = 20)$pts
zion_sample

## [1] 31 37 38 24 17 20 25 33 29 32 23 30 14 21 27 32 33 29 28 36

sd(zion_sample)/sqrt(20)

## [1] 1.471617 37



Two sampling distributions together

rbind(zion_mean_20, harden_mean_20) %>%
ggplot(aes(x = sample20, col = player)) +
geom_density(size = 1.25) +
theme_bw(base_size = 19, base_family = "Fira Sans")
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Describing distributions



The normal distribution

We’ll start with something we’ve seen before: the normal distribution

• The shape is commonly known: the “bell curve”
• It is perfectly symmetrical: mean = mode = median
• Turns out, a lot of things naturally follow the normal curve!
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Normality in my listening habits

ggplot(music, aes(x = time)) +
geom_histogram(fill = "steel blue", col = "black") +
scale_x_datetime(breaks = scales::breaks_width("60 min"),

date_labels = "%H:%S") +
theme_bw(base_size = 19)
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Skewed distributions: right-skew

load("lectures/lecture_9.1/survey.RData")
survey_500s <- subset(survey_full, time_conjoint1 < 500)
ggplot(data = survey_500s, aes(x = time_conjoint1)) +
geom_histogram(fill = "steel blue", col = "black") +
theme_bw(base_size = 19)
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Skewed distributions: right-skew

Skewed distributions are asymmetric

• In the example above, the right-tail is much longer
• It’s a right-skewed distribution
• Also called a positively-skewed distribution

• Mean ≠ Median

mean(survey_500s$time_conjoint1)

## [1] 37.72603

median(survey_500s$time_conjoint1)

## [1] 30.319
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Skewed distributions: left-skew

grades <- read.csv("lectures/lecture_9.2/pset1_grades.csv")
ggplot(grades, aes(x = grade)) +
geom_histogram(fill = "steel blue", col = "black") +
theme_bw(base_size = 19) +
geom_vline(xintercept = mean(grades$grade,na.rm = T),

col = "red", size = 1) +
geom_vline(xintercept = median(grades$grade,na.rm = T),

col = "green", size = 1)
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Multimodal distributions: NFL players

nfl <- read.csv("lectures/lecture_9.2/nfl_height_weight.csv")
ggplot(data = nfl, aes(x = weight_in_lbs)) +
geom_histogram(breaks = seq(150, 350, 5),

fill = "steel blue", col = "black") +
theme_bw(base_size = 19)
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Multimodal distributions
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Skewed distribution: what kind of skewness?

Figure 3: Distribution of results from Blood Alcohol Content tests in Washington
state, 1999-2007 (Hansen 2015)
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